Chuyên đề Toán 9: Căn thức bậc hai với hằng đẳng thức √A2 = A
Rút gọn gàng biểu thức đựng căn thức được xem như là dạng toán căn bạn dạng quan trọng vào chương trình Toán 9 và đề thi tuyển sinh vào lớp 10. Tài liệu sau đây do đội ngũ aspvn.net soạn và share giúp học tập sinh làm rõ hơn về căn thức bậc hai cũng như bài toán rút gọn biểu thức. Qua đó giúp chúng ta học sinh ôn tập cùng rèn luyện cho kì thi tuyển sinh vào lớp 10 sắp đến tới. Mời các bạn học sinh cùng quý thầy cô thuộc tham khảo!
Để mua tài liệu, mời ấn vào đường link sau: bài xích tập Toán 9 Căn thức bậc hai cùng hằng đẳng thức √A^2 = A
A. Triết lý cần nhớ
1. Căn bậc hai, căn bậc hai số học
- Căn bậc hai của một trong những không a à số x làm sao cho x2 = a
Bạn đang xem: Bài tập về căn bậc hai lớp 9
- Số dương a có đúng nhì căn bậc nhì là nhị số đối nhau, số dương kí hiệu là


- Số 0 gồm đúng 1 căn bậc hau là số 0, ta viết

- cùng với số dương a, số

- Số 0 cũng khá được gọi là căn bậc hai số học tập của 0
- Với nhì số ko âm a với b ta tất cả

b.

c.

Hướng dẫn giải
a. Điều khiếu nại xác định:

b. Điều kiện xác định:
















Dạng 3: Giải phương trình
Dạng phương trình | Ví dụ tham khảo |
![]() | ![]() |
![]() | ![]() Điều kiện xác định ![]() ![]() |
![]() B |
D. Bài tập trường đoản cú rèn luyện
Bài 1: với giá trị làm sao của x thì từng biểu thức sau có nghĩa:
a. ![]() | b. ![]() | g. ![]() |
c. ![]() | d. ![]() | h. ![]() |
e. ![]() | f. ![]() | i ![]() |
Bài 2: triển khai các phép tính sau:
a. ![]() | b. ![]() |
c. ![]() | d. ![]() |
e. ![]() | f. ![]() |
Bài 3: Rút gọn các biểu thức sau đây:
a. ![]() | b. ![]() |
c. ![]() | d. ![]() |
e. ![]() | f. ![]() |
Bài 5: Giải những phương trình sau:
a. ![]() | b. ![]() |
c. ![]() | d. ![]() |
e. ![]() | f. ![]() |
g. ![]() | h. ![]() |
-----------------------------------------------------
----------> Bài liên quan:
Hy vọng tài liệu Căn thức bậc hai cùng hằng đẳng thức sẽ giúp đỡ ích cho chúng ta học sinh học cụ chắc những cách thay đổi biểu thức cất căn bên cạnh đó học giỏi môn Toán lớp 9. Chúc các bạn học tốt, mời chúng ta tham khảo! bên cạnh đó mời thầy cô và học sinh tìm hiểu thêm một số tư liệu liên quan: Lý thuyết Toán 9, rèn luyện Toán 9, Giải toán 9, ...