1. Khái niệm.Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và gọi x là biến số.
Bạn đang xem: Lý thuyết toán lớp 7 đại số

Nếu đại lượng $y$ phụ thuộc vào đại lượng thay đổi $x$ sao cho với mỗi giá trị của $x$ ta luôn xác định được chỉ một giá trị tương ứng của $y$ thì $y$ được gọi là hàm số của $x$ và $x$ gọi là biến số.
Nhận xét: Nếu đại lượng \(y\) là hàm số của đại lượng $x$ thì mỗi giá trị của đại lượng \(x\) đều có một giá trị tương ứng duy nhất của đại lượng \(y\) ( hay mỗi giá trị của \(x\) không thể có hơn một giá trị tương ứng của đại lượng \(y\)).
Chú ý:
+ Khi $x$ thay đổi mà $y$ luôn nhận một giá trị thì $y$ được gọi là hàm hằng.
+ Hàm số có thể được cho bằng bảng, bằng công thức,…
+ Khi $y$ là hàm số của $x$ ta có thể viết: \(y = f\left( x \right);y = g\left( x \right);...\)
2. Mặt phẳng tọa độ
+ Mặt phẳng tọa độ $Oxy$ ( mặt phẳng có hệ trục tọa độ $Oxy$ ) được xác định bởi hai trục số vuông góc với nhau: trục hoành $Ox$ và trục tung $Oy$ ; điểm $O$ là gốc tọa độ.
+ Hai trục tọa độ chia mặt phẳng tọa độ thành bốn góc phần tư thứ I, II, III, IV theo thứ tự ngược chiều kim đồng hồ.

* Tọa độ một điểm:
Trên mặt phẳng tọa độ:
+ Mỗi điểm $M$ xác định một cặp số \(\left( {{x_0};{y_0}} \right).\) Ngược lại mỗi cặp số \(\left( {{x_0};{y_0}} \right)\) xác định một điểm $M$ .
+ Cặp số \(\left( {{x_0};{y_0}} \right)\) gọi là tọa độ của điểm $M$ , \({x_0}\) là hoành độ, \({y_0}\) là tung độ của điểm $M.$
+ Điểm $M$có tọa độ \(\left( {{x_0};{y_0}} \right)\) kí hiệu là \(M\left( {{x_0};{y_0}} \right).\)
II. Các dạng toán thường gặp
Dạng 1: Tìm giá trị của hàm số tại giá trị cho trước của biến số
Phương pháp:
+ Nếu hàm số được cho bằng bảng, ta tìm trong bảng giá trị của hàm số tương ứng với giá trị cho trước của biến số.
+ Nếu hàm số được cho bằng công thức, ta thay giá trị đã cho của biến vào công thức và tính giá trị tương ứng của hàm số.
Dạng 2: Viết công thức xác định hàm số
Phương pháp:
Căn cứ vào sự tương quan giữa các đại lượng để lập công thức
Dạng 3: Viết tọa độ của điểm cho trước trên mặt phẳng tọa độ
Phương pháp:
+ Từ điểm đã cho kẻ đường thẳng song song với trục tung, cắt trục hoành tại một điểm biểu diễn hoành độ của điểm đó.
+ Từ điểm đã cho kẻ đường thẳng song song với trục hoành, cắt trục tung tại một điểm biểu diễn tung độ của điểm đó.
+ Hoành độ và tung độ tìm được là tọa độ của điểm đã cho
Dạng 4: Biểu diễn các điểm có tọa độ cho trước trên mặt phẳng tọa độ
Phương pháp:
+ Từ điểm biểu diễn hoành độ của điểm cho trước kẻ đường thẳng song song với trục tung
+ Từ điểm biểu diễn tung độ của điểm cho trước kẻ đường thẳng song song với trục hoành
+ Giao điểm của hai đường thẳng vừa dựng là điểm phải tìm.
Xem thêm: Giá Trị Tuyệt Đối Của Số Hữu Tỉ X Được Xác Định Như Thế Nào ?


Chia sẻ
Bình chọn:
4.5 trên 177 phiếu
>> (Hot) Đã có SGK lớp 7 kết nối tri thức, chân trời sáng tạo, cánh diều năm học mới 2022-2023. Xem ngay!
Bài tiếp theo

Luyện Bài Tập Trắc nghiệm Toán 7 - Xem ngay
Báo lỗi - Góp ý
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
TẢI APP ĐỂ XEM OFFLINE


Bài giải đang được quan tâm
× Báo lỗi góp ý
Vấn đề em gặp phải là gì ?
Sai chính tả Giải khó hiểu Giải sai Lỗi khác Hãy viết chi tiết giúp aspvn.net
Gửi góp ý Hủy bỏ
× Báo lỗi
Cảm ơn bạn đã sử dụng aspvn.net. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Gửi Hủy bỏ
Liên hệ | Chính sách


Đăng ký để nhận lời giải hay và tài liệu miễn phí
Cho phép aspvn.net gửi các thông báo đến bạn để nhận được các lời giải hay cũng như tài liệu miễn phí.